The R Book

Wiley, 2007年6月13日 - 950 頁
1 評論
The high-level language of R is recognized as one of the most powerful and flexible statistical software environments, and is rapidly becoming the standard setting for quantitative analysis, statistics and graphics. R provides free access to unrivalled coverage and cutting-edge applications, enabling the user to apply numerous statistical methods ranging from simple regression to time series or multivariate analysis.

Building on the success of the author’s bestselling Statistics: An Introduction using R, The R Book is packed with worked examples, providing an all inclusive guide to R, ideal for novice and more accomplished users alike. The book assumes no background in statistics or computing and introduces the advantages of the R environment, detailing its applications in a wide range of disciplines.

  • Provides the first comprehensive reference manual for the R language, including practical guidance and full coverage of the graphics facilities.
  • Introduces all the statistical models covered by R, beginning with simple classical tests such as chi-square and t-test.
  • Proceeds to examine more advance methods, from regression and analysis of variance, through to generalized linear models, generalized mixed models, time series, spatial statistics, multivariate statistics and much more.

The R Book is aimed at undergraduates, postgraduates and professionals in science, engineering and medicine. It is also ideal for students and professionals in statistics, economics, geography and the social sciences.

讀者評論 - 撰寫評論

Review: The R Book

用戶評語  - Goodreads

It's hard to find a good R-Book. This one did the job for me while I was learning, but you will be lost if you are not on r-seek constantly filling the gaps. This book also requires a strong stomach ... 閱讀評論全文

其他版本 - 查看全部

關於作者 (2007)

Michael Crawley is Professor at Imperial College at Silwood Park. He is a fellow of the Royal Society and author of the bestselling titles Statistics: An Introduction using R and Statistical Computing: An Introduction to Data Analysis Using S-Plus.