網頁圖片
PDF
ePub 版

The Moon's Phases, 1942 (Standard Time)

(A.M., light figures; P.M., black)
Eastern
Central Mountain

Pacific
Std. Time Std. Time Std. Time Std. Time
Phase Day. Boston, New St. Louis, New Denver, Salt San Francisco

York, Etc, Orleans, Etc. Lake City, Etc. L.Angeles, Etc.

1942

Alaska Std. Time Fairbanks

Etc.

[blocks in formation]

Nov.

Dec.

Last Quarter 1

1 18
12 18 310 11 18

10 18

8 18 New Moon.. 8

10 19
919
8 19
7 19

5 19 First Quarter 15

1 56

1 2 56
14d 11 56

10 56

8 56 Full Moon... 22

3 24
2 24
1 24
12 24

10 24 Last Quarter

30
8 37
7 37
6 37
5 37

3 37 New Moon... 7

8 59
7 59
6 59
5 59

3 59 First Quarter 14

12 47
11 47
10 47
9 47

7 47 Full Moon. 22

10 3
93
8 3
7 3

5 3 Last Quarter 30

1 37
12 37
11 37
10 37

8 37 The Moon The moon completes a circuit around the earth The nodes have a retrograde motion, which in a period whose mean or average length is 27 causes them to make an entire revolution in 18 days 7 hours 43.2 minutes; but in consequence of its years 218 days 23 hours 5 minutes and 46 seconds motion in common with the earth around the sun.

Both sun and moon return to a node after 18 the mean duration of the lunar month-that is, the years and 11 days, so that an eclipse is followed by

another of the same general character at the end time from new moon to new moon-is 29 days 12 of this period. hours 44.05 minutes, which is called the moon's

The moon always presents the same face to the synodical period.

earth, as is evident from the permanency of the The mean distance from the earth according to various markings on her surface. This proves that the American Ephemeris is 238,857 miles. The the moon revolves on an axis, and the time of maximum distance, however, may reach 252,710 rotation is exactly equal to the time of revolution miles, and the least distance to which the moon around the earth-viz., 27.32166 days. can approach the earth is 221,463 miles.

The moon's axis is not perpendicular to the Its diameter is 2,160 miles, and if we deduct plane of her orbit, but deviates therefrom by an from her distance from the earth the sum of the angle of about 6° 41'. two radii of the earth and moon--viz,, 3,963 and The moon's surface contains about 14,657,000 1.080 miles, respectively-we shall have for the square miles; the volume is 1-49 and mass 1-81 that nearest approach of the surfaces of the two bodies of the earth, or about 3 2-5 that of water. 216,420 miles.

At the lunar surface gravity is only 1-6 of what The orbit's form is that of a serpentine curve, it is at the earth. always concave toward the sun, and its plane is The centre of gravity of the earth and moon, or inclined to the plane of the earth's orbit at an the point about which they both actually revolve in angle of 4° 59' to 5° 18' the mean value being 5° 8'. their course around the sun, lies within the earth.

These points of intersection with the ecliptic are It is 1,050 miles below the surface. called nodes, and it is only at or near them that The tides are caused mainly by the moon, the eclipses can occur.

tide-raising power of moon and sun is 11 to 5.

Planetary Configurations, 1942

D. H. M

Jan.

a

[merged small][ocr errors]

(Eastern Standard Time. A. M. light figures; P. M. black figures)

D. H. M.
in perihelion
July

b O N 0°41
stationary

5

in aphelion
DS 404
CO N 2° 23'

gr. elong. W 21° 23' 86° 15'

ON 3° 38'
stationary
CON 5° 26'

gr. elong. E. 18° 31'

in 2
C D N 2° 43'

18
2 N 40 43

20

NN

[ocr errors]

a qaa
Ο ααα σααασα ο α οΦ

099
066

२२ २२२२

an onan
saq 5 No

[ocr errors]
[blocks in formation]

31

[merged small][merged small][ocr errors]
[merged small][subsumed][merged small][ocr errors]
[ocr errors]

a a aa aa aa a

[ocr errors]
[ocr errors]

00 0000 0

[ocr errors]
[ocr errors]

Qa a

[ocr errors]
[ocr errors]

Sept.

[merged small][ocr errors]

ÖN 3° 28'

[merged small][ocr errors][merged small][ocr errors][subsumed]
[ocr errors]

23 11 17

www me sy

in 99
gr. elong. W. 27° 21'
gr. brilliancy
ON 1° 58'
OS 3° 3'

in aphelion
O partial eclipse

enters T spring com:
b N 3° 10'

ON 6° 45'
o 2 C 2 N4° 58'

1

[ocr errors]

aaa

[ocr errors]

Oct.

23

[merged small][merged small][merged small][ocr errors]
[ocr errors]
[merged small][ocr errors][ocr errors]

gr. elong. W. 46° 19'

[ocr errors]
[ocr errors]

NI3° 13'

19 19 20

2 N 4° 52' superior

[ocr errors]

stationary

in perihelion o ON 0° 45'

gr. elong W 18° 28'

in perihelion

[blocks in formation]

OS 2° 43'

[ocr errors]

aa aaaaa

on hanno

[ocr errors]
[ocr errors]

DORADO
ZZZZZ

N 3° 46'
N 0° 37'

3° 15'
N 7° 23'

4° 40'
gr. elong. E 22° 11'
ON 5° 32'

aa aa aa aa a

17

[ocr errors]

in aphelion
stationary
in 89

stationary
superior

by 3° 0

in 89
C2 N 2° 59'

in 89
o superior

[blocks in formation]

in aphelion

[ocr errors]

Qa aa a a

[ocr errors]

a aa aa a a a

ON 2° 19'
in aphelion

b N 3° 19'
inferior
6 N 1° 24'
2 N 4° 27'

N 4° 13'
enters sum. com.
stationary

[ocr errors]

nanon

[ocr errors]
[ocr errors]
[ocr errors]

17 21

enters winter com.

o

[ocr errors]
[ocr errors]

Star Table, 1942

Star

Mag-Par-1

ai- al- Light Right Declitude lar Yrs. Ascen. nation

Star

Mag-Par

ai al- Light Right Declitudel lax Yrs. Ascen. nation

O

[ocr errors]
[ocr errors]

A Andromedae

H. M.
A Geminorum

& M. (Alpheratz) 2.2 0.05 65 0

5.4 +28 46

(Castor) 1.6 10.07 50 7 30.9 +32 1 B Cassiopeiae. 2.4 0.07 50 0 6.1 +58 50 A Canis Min. r Pegasi.. 2.9 0.01 300

0 10.2 + 14 52 (Procyon) 0.5 0.31 10 7 36.3 + 5 23 A Phoenicis .. 2.4 0.05 65 0 23.4 -42 37 || B Geminorum A Cassiopeiae

(Pollux) 1.2 10.101 33 7 41.8 +28 10 (Schedir) 2.3 0.02 150 0 37.2 + 56 13 P Puppis.

2.9 0.021 150 8 5.1 - 24 8 B Ceti.

2.2 0.04 80 04071-18 1814 Velorum.. 2.2 0.02 150 9 5.9 - 43 12 r Cassiopeiae 2.2 0.04 80 0 53.2 +60 24 A Hydrae. 2.2 0.02 150 9 24.7 - 8 24 B Andromedael 2.4 10.05 65 1

6.5 + 35 19

A Leonis A Cassiopeiae 2.8 10.07 50

1 22.0 + 59 56

(Regulus) 1.3 10.06 55 10 5.3 + 12 15 A Eridani

r Leonis ... 2.6 0.02 150 10 16.8 + 20 8 (Acheraar) 0.6 0.05 65 1 35.6 - 57 32 || B Ursae Maj. 2.4 0.04 80 10 58.4 + 56 42 A Ursae Min.

A Ursae Maj.. 2.0 10.05 65 11 0.2 +62 4 (Pole Star) 2.1 10.01 300 1 43.81 +88 59

A Leonis..... 2.6 10.07 50 11 11.0 + 20 51 B Arietis... 2.7 0.07 50 1 51.41 + 20 32 B Leonis r Andromedae 2.3 0.02 150

2 0.3 +42 3

(Denebola) 2.2 0.101 - 33 11 46.1 +14 54 A Arietis.. 2.2 0.04 80 2 3.91 +23 11 r Ursae Maj.. | 2.5 0.04 80 11 50.8 +54 1 B Trianguli. 3.1 10.01) 300 2 6.1

+34 43

A Crucis.. 1.0 0.02 150 12 23.4 - 62 47 O Ceti (Mira). 2.0 10.07 50 2 16.5 - 3 15B Corvi..

2.8 0.031 100 12 31.3 23 5 A Ceti,

2.8 0.02 150 2 59.2 + 3 52T Virginis. 2.9 10.07 50 12 38.71 - 1 8 r Persel. 3.1 0.01 300

3 0.6 + 53 17
B Crucis.

1.5 0.01 300 12 44.3 59 22 A Persei.

1.9 0.02 150 3 20.2 + 49 39 E Ursae MajA Persei.

3.1 0.01 300 3 38.81 +47 36 oris (Alioth)] 1.7 0.06 55 12 51.5 + 56 16 H Tauri

z Ursae Maj(Alcyone) 3.0 0.01 300 3 44.0 +23 56 oris (Mizar) 2.4 0.04 80 13 21.6 + 55 14 Z Persel... 2.9 0.01 300 3 50.5 +31 43A Virginis E Persei. 3.0 0.00 500 3 54.0 +39 51

(Spica) 1.2 0.01 300 13 22.11 -10 52 r Eridani. 3.2 10.02 150 3 55.3 -13 40 H Ursae Maj E Tauri.. 3.6 10.03 100 4 25.3+19 3

(Alkaid) 1.9 0.01 300 13 45.3 +49 36 A Tauri

H Bootis..... 2.8 0.10 33 13 51.9 +18 41 (Aldebaran) 1.1 10.06 55 4 32 6+16 24B Centauri.. 0.9 0.04 80 13 59.71 - 60 6 II Orionis.. 3.3 10.13 25 4 46.7 + 6 531 Centauri.... 2.3 10.05 65 14 3.3-36 6 1 Aurigae. 2.9 0.02 150

4 53.2 +33

5A Bootis H. Aurigae. 3.3 0.01) 300 5 2.4 +41

9

(Arcturus) 0.2 0.10 33 14 13.01 +19 29 B Eridani. 2.9 0.05 65 5 5.0 5 10 | A Centauri.... 0.1 10.76 14 35.6 - 60 36 B Orionis

E Bootis

2.7 0.02 150 14 42.5 +27 19 (Rigel) 0.3 0.00 500 5 11.7 8 16B Ursae Min.. 2.2 0.04 80 14 50.9] + 74 24 A Aurigae

A Coronae (Capella) 0.2 0.07 50 5 12.4 +45 56

Borealis 2.3 0.05 65 15 32.2 +26 55 r Orionis

A Serpentis... | 2.8 0.04 80 15 41.4 + 6 36 (Bellatrix) 1.7 0.02 150 5 22.0 + 6 18 A Scorpii.. 2.5 0.001 500 15 56.91 - 22 27 B Tauri... 1.8 0.031 100 5 22.6 +28 34 B Scorpii, 2.9 0.00 500 16 2.1 -19 39 A Orionis.. 2.5 0.001 500 5 29.0 0 20 A Scorpii A Leporis 2.7 0.02 150 5 30.2 - 17 52

(Antares) 1.2 0.02 150 16 25.8) -26 18 I Orionis 2.9 0.00 500 5 32.6 5 57 B Herculis.. 2.8 0.02 150 16 27.7 +21 37 E Orionis 1.8 0.01 300 5 33.3 - 1 14A Triangull z Tauri.. 3.0 0.01 300 5 34.2 + 21 7

Australis 1.9 0.03 100 16 42.5 - 68 55 2 Orionls. 2.0 l0.00 500 5 37.8 158 E Scorpii.

2.4 10.04 80 16 46.4 - 34 11 K Orionis. 2.2 0.01 300 5 45.0 9 41 H Ophiuchi... 2.6 0.031 100 17 7.0 -15 39 A Orionis

A Scorpii. 1.7 10.02 150 17 29.7-37 4 (Betelgeux) 1.0 0.02 150 5 52.0 + 7 24 A Ophiuchi. 2.1 10.05 65 17 32.2 +12 36 B Aurigae.... 2.1 0.03 100 5 55.3 +44 57 r Draconis. 2.4 0.02 150 17 55.31 +51 30

Aurigae. 2.7 0.03 100 5 55.8 +37 13|| A Lyrae (Vega) 0.1 0.12 27 18 35.0 + 38 44 B Canis Maj.. 2.0 0.01 300 6 20.1-17 56|| A Aquilae A Carinae

(Altair) 0.9 0.20 16 19 48.0 + 8 43 (Canopus) -0.9 0.02 150 6 22.7 - 52 40r Cygni.

2.3 0.00 500 20 20.1 + 40 4 r Geminorum) 1.9 0.05 65 6 34.4 +16 27|| A Pavonis... 2.1 0.01 300 20 21.1 - 56 55 A Canis Ma

A Cygni Joris (Sirius) -1.6 10.37 9 6 42.6 - 16 38

(Deneb.) 1.3 0.01 300 20 39.5 +45 4 E Canis Maj.. 1.6 10.01

300
6 56.3 28 54 E Pegasi.

2.5 0.02 150 21 41.3 + 9 36 A Canis Maj.. 2.0 0.01 300 7 6.0 -26 18A Piscis

Australis 1.3 0.14 23 22 54.5 - 29 56 To find the time when star is on meridian, subtract R. A. M. S. of the sun table below from the star's Right Ascension, first adding 24h to the latter, if necessary, mark this result P. M. if less than 12h.; but it greater than 12h. subtract 12h. and mark the remainder A. M.

.

Right Ascension of Mean Sun, 1942

(At Washington-Mean Noon)
R. A.
R. A.
R. A.
R. A.
R. A.

R. A. Date M. S.

Date

M. S. Date M. S. Date M. S. Date M. S. Date M. S.
Н. M.
H. M.
H. M.

H.
M.
H. M.

H. M. Jan. 1/18 42.9 Mar. 2 22 39.5 May 1 2 36.0 June 30 6 32.5 Aug. 29 10 29.1 Oct. 28 14 25.6

11 19 22.3 12 23 189 111 3 15.4 July 10 7 12 0 Sept. 811 8.5 Nov. 7 15 5.0
21 20 1.8
22 23 58.3
21 3 54.8

7 51.4
18 11 47.9

17 15 44.5 31 20 41.2 April 1 0 37.7

31 4 34. 2
30 8 30.8
28 12 27.3

27 16 23.9 Feb. 10 21 20.6 11 1 17.1 June 10 5 13.71 Aug. 19 9 10.2: Oct. 813 6.8 | Dec. 7 17 3.3 20 22 0.0 211 1 56.5 20 5 53.1 29 9 49.7 18 13 46.2

17:17 42.8 The Right Ascension of Mean Sun increases 3.943 minutes daily.

20

Notable Telescopes Astronomical telescopes are of two kinds, re- the Lick Observatory, Mt. Hamilton; 36-Inch, fracting and reflecting

University of California, at Santiago, Chile; 36In the frst, the light falls upon a lens which inch, in the Steward Observatory, Tucson, Ariz. A converges the rays to a focus, where the image may new 82-inch reflector (dedicated May 5, 1939) is be magnified by a second lens, called the eyepiece, on Mt. Locke. near Fort Davis, Texas, financed or may be directly photographed.

jointly by the University of Texas and the UniverThe reflector consists of a concave mirror, gen-sity of Chicago. A 200-inch reflecting telescope, the erally of glass coated with silver or aluminum,

largest in the world, is for the California Institute which throws the rays back toward the upper end

of Technology at Pasadena, California. It is located of the telescope, where they fall on the eyepiece or

on Mt. Palomar, 5,565 feet elevation. 66 miles on the photographic plate, as in the case of the north of San Diego and 124.9 miles southeast of refractor. In some telescopes the light is reflected Pasadena. The 200-inch glass disk was poured on again by a secondary mirror and comes to a focus Dec. 2. 1934, at Corning, N. Y. The project was either to the side or after passing through a hole in completed in July, 1939. the principal mirror,

The 74-inch reflector of the Dunlop Observatory Since the rays of light do not pass through the has a glass of Pyrex. mirror, far less perfect glass is required and re

A 74-inch reflector is being made for the new flectors can be made much larger than refractors.

Radcliffe Observatory at Pretoria, So. Africa. The For many kinds of celestial photography reflectors mirror is of pyrex glass. are better than refractors.

The U. S. Naval Observatory, Washington, has a

new reflector of the Ritchey-Chretien type, the The largest refractors in the world are: 40-inch

chief characteristic of which is a larger field than of the University of Chicago, at the Yerkes Ob

is commanded by the usual type of reflector. When servatory. William Bay. Wis (62 feet long); 36

the instrument is used photographically it is necesinch of the University of California, at the Lick

sary that the films or plates be somewhat curved Observatory, Mount Hamilton; 3212-inch, in the in shape. observatory at Meudon, France: 3112-inch, in the Photographic refractions having a 2, 3, or 4 lens astrophysical observatory at Potsdam, Germany; objective are smaller in size and shorter in length. 30-Inch, at Pulkova, Russia: 30-inch, Univ. of The best known of these are: the 27-inch refractor Paris, at Nice: 28-inch, in Royal Observatory, of the University of Michigan, at Bloemfontein, Greenwich, England: 30-Inch photographic re

South Africa; the 26-Inch refractor of Yale Unifractor of the University of Pittsburgh: the 26- versity, at Johannesburg, South Africa, the 24-inch inch instruments at the U. S. Naval Observatory, of the Harvard Observatory at its station in South Washington, and at the University of Virginia. Africa; two of 16 inches at Heidelberg and at the

The largest reflectors are: 74-inch, David Harvard Observatory; and the 10-inch Bruce teleDunlop Observatory, University of Toronto, at scope at the Yerkes Observatory. Richinond Hill, 12 miles north of Toronto, Can.; The light-gathering power of a telescope is pro72-inch, in the Dominion Astrophysical, Victoria, portional to the area of its lens or mirror. The B. C.; 69-inch, Ohio Wesleyan University, Dela- 40-inch Yerkes refractor increases the amount of ware, O.; 100-inch, Carnegie Institution, Mt. Wil- light forty thousand times that received by the eye. son, Calif.: 61-inch, Oak Ridge station of Harvard; The magnifying power of a telescope is propor60-inch, Harvard Univ., in South Africa: 48?2- tional to the ratio of the length of focus of the inch, Berlin-Babelsburg, Germany; 42-inch, Lowell | large lens to that of the eyepiece. Observatory. Flagstaff, Ariz. ; 3914-inch, Hamburg Thus the use of different eyepieces yields various University, Bergedorf, Germany; 3712-inch, Detroit magnifying powers, but those exceeding 1,000 are Observatory of the University of Michigan, at Ann seldom used because of the trembling of the Arbor; 36-inch, of the University of California, in earth's atmosphere.

[ocr errors]

Polar Star, 1942
Mean time of upper transit (at Washington) and Polar Distance of Polaris
Upper Pole
Upper Pole

Upper Pole Date Transit Dist. Date

Transit Dist. Date

Transit Dist.
H. M. S.
H. M. s.

H. M. S.
Jan

17 0 36 P.M.1 0 26 May 1 11 7 22 AM. 1 0 46 Sept. 1 3 5 52 AM1 0 48 Feb. 1 4 58 5 P.M. l 0 24 June 1 9 5 51 A.M.1 0 53 Oct

1 1 8 17 A.MI 0 38 Mar

13 7 29 P.M.10 28 July. 17 8 26 AM 1 056 Nov 111 2 34 P.M.10 27 Apr

11 5 17 P.M.10 37 Aug. .15 7 12 A.M.1 0 55 Dec. 19 4 25 PMJI O 16 Upper transit of Polaris occurs, on the average. upper transit and 6h. 2m. after lower transit, 3m. 56s. earlier each day. The interval between

while the greatest Western elongation occurs 5h. lower and upper transit of Polaris is 11h 58m. 2s. At the latitude of Washington, D. C., the greatest

56m. after upper transit and 6h. 2m. before lower Eastern elongation of Polaris occurs 5h, 56m. before transit.

[blocks in formation]

10

23

D. H
D. Н.
D. HI

D

H. January 14 5 July 26 4 January 26 12 July

7 February 11 7 August 23 4 February 23 9 August

7 8 March 8 6 September. 18 10) March

5 September
April
4 1 October

14
12 April
19 11 October

1

8 May 2 2 November. 10 12 May

17 10 October

29 May 30 11 December. 8 7 June

13 2 November 26 June 27 81

December 23 Each month the moon is said to be in perigee The average time from perigee to perigee, or from when nearest to the earth and in apogee when apogee to apogee, is 27d. 13h. 18m 33s; known as farthest from the earth.

the anomalistic month.

Morning and Evening Stars, 1942
MORNING STARS

EVENING STARS

Mercury-January 1 to February 9, April 20 to June Mercury-February 9 to April 20; June 12 to August

12August 2 to October 10; November 30 to end 2: October 10 to November 30.

of year. Venus--February 2 to November 16.

Venus January 1 to February 2; November 16 to

end of year. Mars-October 5 to end of year.

Mars-January 1 to October 5.

Jupiter-January 1 to June 25. Jupiter June 25 to end of year.

Saturn-January 1 to May 23; December 1 to end Saturn-May 23 to December 1.

of year.

Table of Magnetic Declination

Source: United States Coast and Geodetic Survey
Values observed at selected points, reduced to January, 1942; also the annual change.

A plus (+) sign to the annual change denotes increasing declination, and a minus(-) sign the reverse.

(Specially prepared for the World Almanac in the Office of the U. S. Coast and Geodetic Survey. Further information may be obtained by addressing The Director, U. S. Coast and Geodetic Survey. Washington, D. C.) Ap- Ap- Decl'a

Ap- Ap- Decl'n State Station

prox. proz. Jan.. An State Station prox. prox. Jan. An
Lat. Long
1942 Ch

Lat. Long. 1942 Ch

[ocr errors][ocr errors]

N.D....

Ohio....

Ala...... Huntsville..

Mobile

Montgomery Ariz..... Nogales.

Prescott.

Yuma
Ark... Little Rock.
Calli. Los Angeles..

Sacramento.
San Diego.

San Francisco
Colo.... Denver.
Conn... Hartford.

New Haven.
Del. Dover.
D. C.. Washington.
FIA.. Jacksonville.

Key West.

Tallahassee Ga... Atlanta.

Savannah. Idaho... Boise.... Illinois. Chicago.

Springfield lod....

Fort Wayne.

Indianapolis. lowa.... Des Moines.

Keokuk. Kansas. Ness City.

Topeka... Ky...... Lexington.

Louisville..

Paducah.. La.... Baton Rouge.

New Orleans

Shreveport. Malpe.. Bangor

Eastport.

Portland. Md..... Annapolis.

Baltimore. Mass.... Boston

Pittsfeld. Mich.... Detroit,

Lansing

Marquette Mian... Duluth

St. Paul Miss.... Jackson.

Oxford..
Mo...... Jefferson City

Kansas City.
St. Louis....

34 44 86 351 4 20 E +2 30 42 88 09 5 17 El +2 32 22 86 18 3 06 E + 31 21 110 56 13 55 E +1 34 32 112 27 14 47 E O 32 44 114 37 14 58 E 0 34 47 92 18 7 14 E + 2 34 05 118 15 15 53 E O 38 32 121 30 17 05 E-1 32 42 117 13 15 14 E 0 37 48 122 28 17 53 E-1 39 46 104 54 14 14 E 0 41 47 72 42 13 31W +2 41 19 72 55 12 28W +2 39 09 75 31 8 47W 38 53 77 00 7 01 W 30 22 81 40 1 02 E +1 24 33 81 48 3 01 E +1 30 26 84 181 2 36 El +1 33 44 84 22 1 40 E + 2 32 01 81 04 0 24 E 43 37 116 12 19 11 E 41 47 87 35 2 24 E + 1 39 501 89 39 3 54 E +1 41 06 85 081 0 53W - 1 39 48 86 12 0 36 E + 2 41 36 93 34 7 22 E 0 40 23

91 23 5 25 E +1 38 28

99 5411 20 E 0 39 02 95 43 9 13 E +1 38 02 84 30 0 06 E + 2 38 14 85 421 O 40 E + 2 37 03 88 36 4 20 E + 2 30 24

91 10 6 59 E 29 56 90 08 622 E + 2 32 28 93 42 7 54 E 44 48 68 48 19 37W 44 551 67 00 21 38W 43 41 70 18 17 11W +2 38 59 76 30 7 42W 39 181 76 35 7 53W 42 20 71 01 15 24W + 2 42 26 73 15 13 51 W 42 2082 58 2 45W 42 44 84 32 1 36W - 1 46 33 87 23 0 26 E 46 44 92 031 7 05 E 1 44 58 93 06 7 40 E-1 32 20 90 12 6 44 E + 2 34 22 89 32 5 55 E +2 38 34 92 11 7 01 E +1 39 01 94 32 8 59 E+1 38 39 90 181 4 47 El +2

Mont.. Helena.

46 37 112 04 18 56 E Neb... Lincoln

40 50 96 40 9 40 E Omaha.

41 16 95 58 9 02 E Ney.... Carson City. 39 07 119 46 17 55 E - 1 Eureka.

39 31 115 58 17 15 E - 1 N. H... Concord

43 13 71 32 15 39W + 2 N. J.. Trenton.

40 15 74 48 10 27W +1 N. M Santa Fe. 35 41 105 57 13 26 E N. Y.. Albany

42 40 73 45 13 36W + 2 Brooklyn 40 35 73 54 11 21W +1 Buffalo.

42 56 78 52 7 34W Ithaca..

42 27 76 28 9 35W +1 N. C.... Raleigh.

35 471 78 39 4 16W 0 Wilmington 34 13 77 56 3 17W Bismarck

46 49 100 47 13 47 E - 1 Pembina. 48 58 97 15 9 27 E - 1 Cincinnati. 39 081 84 31 0 42 E +2 Cleveland.. 41 28 81 37 4 57W

Columbus. 40 03 82 59 1 48W Okla.... Atoka..

34 23 96 09 9 06 E Guthrie.

35 53 97 25 9 59 E Oregon. Portland. 45 31 122 43 22 51 E Pa.

Harrisburg, 40 15 76 53 8 32W
Philadelphia. 39 57 75 12 9 51W+

Pittsburgh 40 29 80 01 5 33W -1 R. I. Providence. 41 46 71 28 14 48W +2 S. C... Charleston. 32 46 79 49 1 34W

Columbia. 34 02 81 03 003 E +1 S. D.... Pierre.

44 22 100 21 12 10 E - 1 Yankton. 42 53 97 23 10 40 E Tenn.... Knoxville. 35 57 83 57 0 35W - 2

Memphis. 35 08 89 56 5 36 E + 2

Nashville. 36 09 86 44 3 30 E
Teras..
Austin.

30 16 97 46 9 28 E
El Paso.

31 48 106 26 12 45 E
Galveston. 29 19 94 47 8 44 E
Houston.. 29 43 95 23 9 07 E
San Antonio.. 29 29 98 32 10 11 E +2

41 10 111 58 17 43 E - 1 Salt Lake City. 40 47 111 52 16 54 E Vt..... Burlington.. 44 28 73 12 15 01W + 2

Montpelier. 44 15 72 32 16 42W +
Lynchburg. 37 24 79 08 4 09W
Norfolk.

36 52 76 16 6 19W Richmond 37 33 77 29 5 35W Wash... Olympia.

47 03 122 53 23 12 E Walla Walla, 46 04 118 23 21 12 E W. Va... Charleston. 38 21 81 38 3 15W

Wheeling.. 40 04 80 40 2 47W Wis..... La Crosse.. 43 501 91 14 4 28 E

Madison. 43 04 89 25 3 49 E

Milwaukee. 43 04 87 52 2 12 E Wyo....Cheyenne. 41.09 104 52 14 44 E-1

OOONNOOONN-NON-NUO ON ON-OO-ONO-1--OOL

Utah... Ogden.

Va....

TERRITORIES AND DEPENDENCIES
Alaska.. Dutch Harbor. .153 53 166 32 16 27 E - 2 T. H....Hilo.
Kiska.
51 59 182 28 6 18 E 2

Honolulu
Kodlak.

57 48 152 22 23 38 E - 2 || P. I. Manila.
St. Michael. 63 29 162 01 19 34 E - 4 P. R.. Ponce
Sitka.
57 03 135 20 29 48 E

San Juan
C. Zone.IColon

9 211 79 57 5 12 El

[merged small][ocr errors]

CUBA 123 091 82 211 3 28 El +111

Cuba ... Havana.

Santiago...

120 00 75 49! O 17 E - 2

EXTREME VALUES

Maine.. I Van Buren..

147 101 67 57122 36W1 011 Alaska.. DemarcationPt. 69 39(141 0039 15 E

5

Rate of Speed of a Falling Body

Source: Aviation and Army Records. In the first second of its descent a body falls 16 = 144 feet; at the end of the fifth, 5 X 5 X 16 = feet; second second, 16 + 32 = 48 feet; third second. 400 feet. Conversely, to find the time in seconds to 16 + 04 = 80 feet; fourth second, 16 + 96 = 112 feet: fall any distance, divide the distance in feet by 16 Arth second. 16 + 128 = 144 feet; nth second. 16 + 32 and extract the square root; thus to fall a mile (n-1) feet. The total distance fallen by a body at divide 5,280 by 16, which gives 330, and the square the end of the nth second is given in feet by mul- root of 330 is a little over 18, the number of seconds tiplying the square of the time in seconds by 16. which is the vacuum time to fall a mile. Owing to

Thus at the end of the first second it has fallen the resistance of the air, it takes about 19 seconds 16 feet, at the end of the second second 2 X 2 X 16 for a bomb to reach the earth when dropped frun 7:64 feet, at the end of the third second 3 X 3 X 16 an airplane a mile high.

« 上一頁繼續 »