PRELIMINARY RESULTS AND BACKGROUND

5

the identity operator on X* (o r to the canonical embedding of X int o X**).

For an y v in X* E X, w e define the "trace" by letting

tr(i) =/,* .

Clearly,

(0.6) | t r ( u ) | H |

A

.

If v = E" x*S x, , we have tr(v) = E " x*(x,). Similarly , if £ : X - A" is a finit e

rank operato r wit h associate d tenso r v i n X * ® X, we define it s trac e simpl y b y

setting tr(v) = tr(v) . This has the usual properties of th e trace. For instance, let u:

X - Y an d w: Y - X b e operators . I f on e o f the m i s o f finit e rank , the n i t i s

easy t o chec k tha t tr(wvv ) = tr(vvw) . One o f th e mai n difficultie s her e i s tha t thi s

notion o f trac e doe s no t mak e sens e in genera l o n N(X

9

X) sinc e th e correspon -

dence between X* § X an d N( X, X) i s (in general) not injective . The problem is

that (0.6 ) does not impl y |t r v\ N(v) fo r all finite rank operator s v: X - X. Th e

next lemma implies, however, that this is true if X possesse s the A.P.

LEMMA 0.4 . Let u: X - Y be an approximable operator. Let v be in Y* 0 X,

and let v: Y - X be the associated finite rank operator. Then

(0.7) \lr(uv)\N(v)\\u\\.

PROOF.

Le t v = E f

TJ *

$ z, . Assume that N(v) 1.

There is an expansion of the for m

oo

(0.8) V * e X, o(x) = £ \ nyn*(x)xn

« = 1

with X

n

e R , j„ * e B Y+, x

n

e tf^, an d suc h that E|AW| 1.

By modifyin g (\ n) i f necessary , w e ca n assum e tha t x

n

- » 0 whe n H - oo .

Hence, we may assume that th e sequence (xn) an d th e set ( zi)i^ ar e included i n

a compact se t A' .

Let a

e

: X - y b e a finite rank operator such tha t

sup|||a

e

x - «x| | | x e A j e.

Then

(0-9) t\Ky:(«x.-«s*)\*-

1

From (0.8), it follows immediately (since a

£

is of finite rank) tha t

(010) tr(a e£) = £ \„*(«

£

xj.

On th e other hand, since { zv..., z

n

} c A' , we have

| tr(ap) - tr ( uv) | - | £ *?*(V , " */ ) I

C e with C = E h f | | .

l